Detecting personal health mentions on social media is essential to complement existing health surveillance systems. However, annotating data for detecting health mentions at a large scale is a challenging task. This research employs a multitask learning framework to leverage available annotated data from a related task to improve the performance on the main task to detect personal health experiences mentioned in social media texts. Specifically, we focus on incorporating emotional information into our target task by using emotion detection as an auxiliary task. Our approach significantly improves a wide range of personal health mention detection tasks compared to a strong state-of-the-art baseline.
translated by 谷歌翻译
The health mention classification (HMC) task is the process of identifying and classifying mentions of health-related concepts in text. This can be useful for identifying and tracking the spread of diseases through social media posts. However, this is a non-trivial task. Here we build on recent studies suggesting that using emotional information may improve upon this task. Our study results in a framework for health mention classification that incorporates affective features. We present two methods, an intermediate task fine-tuning approach (implicit) and a multi-feature fusion approach (explicit) to incorporate emotions into our target task of HMC. We evaluated our approach on 5 HMC-related datasets from different social media platforms including three from Twitter, one from Reddit and another from a combination of social media sources. Extensive experiments demonstrate that our approach results in statistically significant performance gains on HMC tasks. By using the multi-feature fusion approach, we achieve at least a 3% improvement in F1 score over BERT baselines across all datasets. We also show that considering only negative emotions does not significantly affect performance on the HMC task. Additionally, our results indicate that HMC models infused with emotional knowledge are an effective alternative, especially when other HMC datasets are unavailable for domain-specific fine-tuning. The source code for our models is freely available at https://github.com/tahirlanre/Emotion_PHM.
translated by 谷歌翻译
与自然语言处理的XAI旨在产生可读的解释,作为AI决策的证据,以解决解释性和透明度。但是,从HCI的角度来看,当前的方法仅着眼于提供单一的解释,该解释无法解决人类思想和语言经验的多样性。因此,本文通过提出一个生成XAI框架,交互来解决此差距(解释并预测与上下文条件变分自动编码器查询)。我们的新框架分为两个步骤提供了解释:(一步)解释和标签预测; (第二步)各种证据生成。我们在基准数据集E-SNLI上对变压器体系结构进行密集实验。我们的方法在第一步中,针对解释生成(BLEU的增长率高达4.7%)的最先进基线模型的竞争性或更好的表现;它还可以在第二步中产生多种不同的解释。
translated by 谷歌翻译
虚拟现实(VR)技术通常用于娱乐应用中;但是,它也已在我们生活的更严重方面(例如安全)中部署在实际应用中。为了支持在危险行业工作的人们,VR可以确保操作员操纵标准化的任务并协作以应对潜在的风险。令人惊讶的是,很少的研究重点是人们如何在VR环境中进行协作。很少有研究注意运营商在其协作任务中的认知负荷。一旦任务要求变得复杂,许多研究人员将专注于优化相互作用界面的设计,以减少操作员的认知负载。这种方法可能是有价值的。但是,它实际上可以使操作员承受更重要的认知负担,并可能导致更多的错误和协作失败。在本文中,我们提出了一个新的协作VR系统,以支持在VR环境中工作的两个遥控器,以远程控制未螺旋的地面车辆。我们使用比较的实验来评估协作VR系统,重点是在任务和操作总数上花费的时间。我们的结果表明,在两人组中,操作过程中的过程和操作过程中的认知负荷总数明显低于单人组。我们的研究阐明了设计VR系统的启示,以支持有关远程运营商工作流程的协作工作,而不是简单地优化设计成果。
translated by 谷歌翻译
视频对象细分(VOS)是视频理解的基础。基于变压器的方法在半监督VOS上显示出显着的性能改善。但是,现有的工作面临着挑战在彼此近距离接近视觉上类似对象的挑战。在本文中,我们提出了一种新型的双边注意力变压器,以进行半监督VO的运动出现空间(蝙蝠侠)。它通过新型的光流校准模块在视频中捕获对象运动,该模块将分割面膜与光流估计融合在一起,以改善对象内光流平滑度并减少物体边界处的噪声。然后在我们的新型双边注意力中采用了这种校准的光流,该流动流在相邻双边空间中的查询和参考帧之间的对应关系考虑,考虑到运动和外观。广泛的实验通过在所有四个流行的VOS基准上胜过所有现有最新的实验:YouTube-VOS 2019(85.0%),YouTube-VOS 2018(85.3%),Davis 2017VAL/TESTDEV(86.2.2 %/82.2%)和戴维斯(Davis)2016(92.5%)。
translated by 谷歌翻译
本文为旋转组开发了旋转不变的阵阵卷积,因此(3)可以提炼球形信号的多尺度信息。球形的阵头变换从$ \ mathbb {s}^2 $推广到SO(3)组,该组通过一组紧密的Framelet操作员将球形信号分解为近似和详细的光谱系数。分解和重建过程中的球形信号实现了旋转不变性。基于阵型变换,我们形成了一个带有多个SO(3)一面卷积层的NEDLET近似均值球形CNN(NES)。该网络建立了一个强大的工具,可以提取球形信号的几何不变特征。该模型允许具有多分辨率表示的足够网络可伸缩性。通过小波收缩激活函数学习了强大的信号嵌入,该函数会过滤冗余高通表示,同时保持近似旋转不变性。 NES实现了量子化学回归和宇宙微波背景(CMB)的最新性能,删除重建,这显示了通过高分辨率和多尺度球形信号表示解决科学挑战的巨大潜力。
translated by 谷歌翻译
巨大的开放在线课程(MooCs)已成为电子学习的热门选择,因为他们的灵活性很大。但是,由于大量的学习者及其多样化的背景,它征税,以提供实时支持。学习者可能会在各自的MooC论坛上发布他们的混乱和斗争,但随着MooC教师的大量员额和高工作量,教师不太可能识别所有需要干预的学习者。由于数据的不平衡和任务的复杂性,已被研究是一种自然语言处理(NLP)问题的研究,并且已知是具有挑战性的。在本文中,我们探讨了贝叶斯的第一次对学习者的文本帖子进行了两种方法:蒙特卡罗辍学和变分推论,作为评估学习者帖子的教师干预需求的新解决方案。我们基于在类似情况下基于概率模型的基于概率模型的概率模型进行比较模型,对于应用预测的不同情况。结果表明,贝叶斯深度学习提供了传统神经网络未提供的批判性不确定性措施。这增加了对AI的说明,信任和稳健性,这在基于教育的应用中至关重要。另外,与非概率神经网络相比,它可以实现类似或更好的性能,以及较低的方差。
translated by 谷歌翻译
How to learn an effective reinforcement learning-based model for control tasks from high-level visual observations is a practical and challenging problem. A key to solving this problem is to learn low-dimensional state representations from observations, from which an effective policy can be learned. In order to boost the learning of state encoding, recent works are focused on capturing behavioral similarities between state representations or applying data augmentation on visual observations. In this paper, we propose a novel meta-learner-based framework for representation learning regarding behavioral similarities for reinforcement learning. Specifically, our framework encodes the high-dimensional observations into two decomposed embeddings regarding reward and dynamics in a Markov Decision Process (MDP). A pair of meta-learners are developed, one of which quantifies the reward similarity and the other quantifies dynamics similarity over the correspondingly decomposed embeddings. The meta-learners are self-learned to update the state embeddings by approximating two disjoint terms in on-policy bisimulation metric. To incorporate the reward and dynamics terms, we further develop a strategy to adaptively balance their impacts based on different tasks or environments. We empirically demonstrate that our proposed framework outperforms state-of-the-art baselines on several benchmarks, including conventional DM Control Suite, Distracting DM Control Suite and a self-driving task CARLA.
translated by 谷歌翻译
In this paper we revisit endless online level generation with the recently proposed experience-driven procedural content generation via reinforcement learning (EDRL) framework, from an observation that EDRL tends to generate recurrent patterns. Inspired by this phenomenon, we formulate a notion of state space closure, which means that any state that may appear in an infinite-horizon online generation process can be found in a finite horizon. Through theoretical analysis we find that though state space closure arises a concern about diversity, it makes the EDRL trained on a finite-horizon generalised to the infinite-horizon scenario without deterioration of content quality. Moreover, we verify the quality and diversity of contents generated by EDRL via empirical studies on the widely used Super Mario Bros. benchmark. Experimental results reveal that the current EDRL approach's ability of generating diverse game levels is limited due to the state space closure, whereas it does not suffer from reward deterioration given a horizon longer than the one of training. Concluding our findings and analysis, we argue that future works in generating online diverse and high-quality contents via EDRL should address the issue of diversity on the premise of state space closure which ensures the quality.
translated by 谷歌翻译
Evaluating neural network performance is critical to deep neural network design but a costly procedure. Neural predictors provide an efficient solution by treating architectures as samples and learning to estimate their performance on a given task. However, existing predictors are task-dependent, predominantly estimating neural network performance on image classification benchmarks. They are also search-space dependent; each predictor is designed to make predictions for a specific architecture search space with predefined topologies and set of operations. In this paper, we propose a novel All-in-One Predictor (AIO-P), which aims to pretrain neural predictors on architecture examples from multiple, separate computer vision (CV) task domains and multiple architecture spaces, and then transfer to unseen downstream CV tasks or neural architectures. We describe our proposed techniques for general graph representation, efficient predictor pretraining and knowledge infusion techniques, as well as methods to transfer to downstream tasks/spaces. Extensive experimental results show that AIO-P can achieve Mean Absolute Error (MAE) and Spearman's Rank Correlation (SRCC) below 1% and above 0.5, respectively, on a breadth of target downstream CV tasks with or without fine-tuning, outperforming a number of baselines. Moreover, AIO-P can directly transfer to new architectures not seen during training, accurately rank them and serve as an effective performance estimator when paired with an algorithm designed to preserve performance while reducing FLOPs.
translated by 谷歌翻译